aes.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336
  1. #include "aes_internal.h"
  2. #include "array.h"
  3. uint8_t S_BOX[256] = {
  4. 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
  5. 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
  6. 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
  7. 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
  8. 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
  9. 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
  10. 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
  11. 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
  12. 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
  13. 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
  14. 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
  15. 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
  16. 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
  17. 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
  18. 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
  19. 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16,
  20. };
  21. uint8_t INV_S_BOX[256] = {
  22. 0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
  23. 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
  24. 0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
  25. 0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
  26. 0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
  27. 0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
  28. 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
  29. 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
  30. 0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
  31. 0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
  32. 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
  33. 0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
  34. 0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
  35. 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
  36. 0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
  37. 0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D,
  38. };
  39. uint8_t ROUND_CONSTANT[32] = {
  40. 0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36, 0x6C, 0xD8, 0xAB, 0x4D, 0x9A,
  41. 0x2F, 0x5E, 0xBC, 0x63, 0xC6, 0x97, 0x35, 0x6A, 0xD4, 0xB3, 0x7D, 0xFA, 0xEF, 0xC5, 0x91, 0x39,
  42. };
  43. size_t aes__block_get(size_t x, size_t y) {
  44. return x * 4 + y;
  45. }
  46. uint8_t aes__xtime(uint8_t x) {
  47. if ((x & 0x80) > 0) {
  48. return (uint8_t) ((x << 1) ^ 0x1B) & 0xFF;
  49. } else {
  50. return (uint8_t) (x << 1) & 0xFF;
  51. }
  52. }
  53. void aes__shift_rows(uint8_t* block, aes_encryption_mode_t mode) {
  54. uint8_t* word_original = malloc(sizeof(uint8_t) * WORD_LENGTH);
  55. for (size_t word_n = 1; word_n < WORD_LENGTH; word_n++) {
  56. size_t word_start_idx = word_n * WORD_LENGTH;
  57. for (size_t word_idx = 0; word_idx < WORD_LENGTH; word_idx++) {
  58. word_original[word_idx] = block[word_start_idx + word_idx];
  59. }
  60. for (size_t word_idx = 0; word_idx < WORD_LENGTH; word_idx++) {
  61. if (mode == encryption) {
  62. block[word_start_idx + word_idx] = word_original[(word_idx + word_n) % WORD_LENGTH];
  63. } else {
  64. block[word_start_idx + word_idx] = word_original[(word_idx - word_n) % WORD_LENGTH];
  65. }
  66. }
  67. }
  68. free(word_original);
  69. }
  70. void aes__mix_words(uint8_t* block, aes_encryption_mode_t mode) {
  71. if (mode == decryption) {
  72. for (size_t idx = 0; idx < WORD_LENGTH; idx++) {
  73. size_t start_idx = aes__block_get(idx, 0);
  74. uint8_t a = aes__xtime(aes__xtime(block[start_idx] ^ block[start_idx + 2]));
  75. uint8_t b = aes__xtime(aes__xtime(block[start_idx + 1] ^ block[start_idx + 3]));
  76. block[start_idx + 0] ^= a;
  77. block[start_idx + 2] ^= a;
  78. block[start_idx + 1] ^= b;
  79. block[start_idx + 3] ^= b;
  80. }
  81. }
  82. for (size_t idx = 0; idx < WORD_LENGTH; idx++) {
  83. size_t start_idx = aes__block_get(idx, 0);
  84. uint8_t xor = block[start_idx]
  85. ^ block[start_idx + 1]
  86. ^ block[start_idx + 2]
  87. ^ block[start_idx + 3];
  88. uint8_t first = block[start_idx];
  89. for (size_t i = 0; i < 3; i++) {
  90. block[start_idx + i] ^= aes__xtime(block[start_idx + i] ^ block[start_idx + i + 1]) ^ xor;
  91. }
  92. block[start_idx + 3] ^= aes__xtime(block[start_idx + 3] ^ first) ^ xor;
  93. }
  94. }
  95. void aes__add_round_key(uint8_t* block, uint8_t* round_key) {
  96. xor_arrays(block, round_key, BLOCK_LENGTH);
  97. }
  98. // NOTE: malloc
  99. uint8_t* aes__expand_key(uint8_t* key) {
  100. // Original key + 10 round keys in an array
  101. size_t round_keys_array_size = (ROUNDS + 1) * BLOCK_LENGTH;
  102. uint8_t* round_keys = (uint8_t*) malloc(sizeof(uint8_t) * round_keys_array_size);
  103. size_t pos = 0;
  104. size_t round_constant_idx = 0;
  105. for (size_t idx = 0; idx < BLOCK_LENGTH; idx++) {
  106. round_keys[idx] = key[idx];
  107. pos += 1;
  108. }
  109. while (pos < round_keys_array_size) {
  110. for (size_t idx = 0; idx < WORD_LENGTH; idx++) {
  111. round_keys[idx + pos] = round_keys[idx + pos - WORD_LENGTH];
  112. }
  113. if (pos % BLOCK_LENGTH == 0) {
  114. uint8_t first = round_keys[pos];
  115. round_keys[pos] = round_keys[pos + 1];
  116. round_keys[pos + 1] = round_keys[pos + 2];
  117. round_keys[pos + 2] = round_keys[pos + 3];
  118. round_keys[pos + 3] = first;
  119. for (size_t idx = 0; idx < WORD_LENGTH; idx++) {
  120. uint8_t value = round_keys[pos + idx];
  121. round_keys[pos + idx] = S_BOX[value];
  122. }
  123. round_keys[pos] = round_keys[round_constant_idx];
  124. round_constant_idx += 1;
  125. }
  126. uint8_t* previous_word = &round_keys[pos];
  127. uint8_t* modifier_word = &round_keys[pos - BLOCK_LENGTH];
  128. xor_arrays(previous_word, modifier_word, WORD_LENGTH);
  129. pos += WORD_LENGTH;
  130. }
  131. return round_keys;
  132. }
  133. void aes__encrypt_block(uint8_t* block, uint8_t* round_keys) {
  134. aes__add_round_key(block, round_keys);
  135. for (size_t round = 1; round <= ROUNDS; round++) {
  136. for (size_t idx = 0; idx < BLOCK_LENGTH; idx++) {
  137. block[idx] = S_BOX[block[idx]];
  138. }
  139. aes__shift_rows(block, encryption);
  140. if (round != ROUNDS) {
  141. aes__mix_words(block, encryption);
  142. }
  143. aes__add_round_key(block, &round_keys[round * BLOCK_LENGTH]);
  144. }
  145. }
  146. void aes__decrypt_block(uint8_t* block, uint8_t* round_keys) {
  147. for (size_t round = ROUNDS; round >= 1; round--) {
  148. aes__add_round_key(block, &round_keys[round * BLOCK_LENGTH]);
  149. if (round != ROUNDS) {
  150. aes__mix_words(block, decryption);
  151. }
  152. aes__shift_rows(block, decryption);
  153. for (size_t idx = 0; idx < BLOCK_LENGTH; idx++) {
  154. block[idx] = INV_S_BOX[block[idx]];
  155. }
  156. }
  157. aes__add_round_key(block, round_keys);
  158. }
  159. BOOL aes__is_valid_padding(uint8_t* block) {
  160. uint8_t marker = block[BLOCK_LENGTH - 1];
  161. if (marker == 0) {
  162. return FALSE;
  163. }
  164. for (size_t idx = BLOCK_LENGTH - marker; idx < BLOCK_LENGTH; idx++) {
  165. if (block[idx] != marker) {
  166. return FALSE;
  167. }
  168. }
  169. return TRUE;
  170. }
  171. aes_padded_data_t aes_create_padded_data_container() {
  172. aes_padded_data_t out = {
  173. .data = NULL,
  174. .data_length = 0,
  175. .data_length_before_pad = 0,
  176. .padded_block = NULL,
  177. .length = 0,
  178. };
  179. return out;
  180. }
  181. // NOTE: Only drops padding, not the original data. Resets struct to defaults and returns the original data pointer.
  182. uint8_t* aes_drop_padded_data_container(aes_padded_data_t* data) {
  183. uint8_t* ptr = data->data;
  184. free(data->padded_block);
  185. data->padded_block = NULL;
  186. data->data = NULL;
  187. data->data_length = 0;
  188. data->data_length_before_pad = 0;
  189. data->length = 0;
  190. return ptr;
  191. }
  192. // NOTE: malloc
  193. int aes_pad_data(aes_padded_data_t* ptr, uint8_t* data, size_t length) {
  194. if (length == 0) {
  195. return 1;
  196. }
  197. uint8_t* padded_block_ptr = malloc(sizeof(uint8_t) * BLOCK_LENGTH);
  198. if (padded_block_ptr == NULL) {
  199. return 2;
  200. }
  201. ptr->data = data;
  202. ptr->data_length = length;
  203. ptr->padded_block = padded_block_ptr;
  204. if (length % BLOCK_LENGTH == 0) {
  205. // Fill with marker
  206. for (size_t idx = 0; idx < BLOCK_LENGTH; idx++) {
  207. padded_block_ptr[idx] = BLOCK_LENGTH;
  208. }
  209. ptr->data_length_before_pad = length;
  210. } else {
  211. size_t last_block_length = length % BLOCK_LENGTH;
  212. uint8_t* last_block = &data[length - last_block_length];
  213. size_t marker = BLOCK_LENGTH - last_block_length;
  214. // Fill with marker
  215. for (size_t idx = 0; idx < BLOCK_LENGTH; idx++) {
  216. padded_block_ptr[idx] = (uint8_t) (marker & 0xFF);
  217. }
  218. // Insert original data
  219. for (size_t idx = 0; idx < last_block_length; idx++) {
  220. padded_block_ptr[idx] = last_block[idx];
  221. }
  222. ptr->data_length_before_pad = length - last_block_length;
  223. }
  224. ptr->length = ptr->data_length_before_pad + BLOCK_LENGTH;
  225. return 0;
  226. }
  227. void aes_ecb(aes_encryption_mode_t mode, aes_padded_data_t* data, uint8_t* key) {
  228. uint8_t* round_keys = aes__expand_key(key);
  229. for (size_t idx = 0; idx < data->data_length_before_pad; idx += BLOCK_LENGTH) {
  230. if (mode == encryption) {
  231. aes__encrypt_block(&data->data[idx], round_keys);
  232. } else {
  233. aes__decrypt_block(&data->data[idx], round_keys);
  234. }
  235. }
  236. if (mode == encryption) {
  237. aes__encrypt_block(data->padded_block, round_keys);
  238. } else {
  239. aes__decrypt_block(data->padded_block, round_keys);
  240. }
  241. free(round_keys);
  242. }
  243. void aes_cbc(aes_encryption_mode_t mode, aes_padded_data_t* data, uint8_t* key) {
  244. uint8_t* round_keys = aes__expand_key(key);
  245. // TODO: Derive this properly
  246. uint8_t* previous_block = malloc(sizeof(uint8_t) * BLOCK_LENGTH * 2);
  247. for (size_t idx = 0; idx < BLOCK_LENGTH; idx++) {
  248. previous_block[idx] = 0;
  249. }
  250. for (size_t idx = 0; idx < data->data_length_before_pad; idx += BLOCK_LENGTH) {
  251. if (mode == encryption) {
  252. xor_arrays(&data->data[idx], previous_block, BLOCK_LENGTH);
  253. aes__encrypt_block(&data->data[idx], round_keys);
  254. clone_array(previous_block, &data->data[idx], BLOCK_LENGTH);
  255. } else {
  256. clone_array(&previous_block[BLOCK_LENGTH], &data->data[idx], BLOCK_LENGTH);
  257. aes__decrypt_block(&data->data[idx], round_keys);
  258. xor_arrays(&data->data[idx], previous_block, BLOCK_LENGTH);
  259. clone_array(previous_block, &previous_block[BLOCK_LENGTH], BLOCK_LENGTH);
  260. }
  261. }
  262. if (mode == encryption) {
  263. xor_arrays(data->padded_block, previous_block, BLOCK_LENGTH);
  264. aes__encrypt_block(data->padded_block, round_keys);
  265. } else {
  266. aes__decrypt_block(data->padded_block, round_keys);
  267. xor_arrays(data->padded_block, previous_block, BLOCK_LENGTH);
  268. }
  269. free(previous_block);
  270. free(round_keys);
  271. }